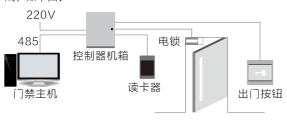
]禁系统与智能锁具管理系统的比较探讨

针对变电站通道控制的技术方案,目前有直接借助安防领域中的门禁系统的方案,也有采用智能锁具管理系统来控制各个通道门的方案。 本文就两种方式进行探讨,并给出对比分析,以供参考。

1. 背景和问题


随着无人值班变电站和运检中心的顺利推广, 无人值班 变电站已经在各个地区大量涌现。但是, 变电站人员撤离后 设备的安全问题成为隐患,因此针对变电站大门和围墙为防 护重点的变电站安防系统在无人值班变电站中也陆续应用, 为变电站的周界保护提供了有力的保障。同时, 由于变电站 对于人员的权限控制非常的严格, 在变电站周围和内部都有 未经授权不能进入带电设备区的要求, 因此需要在变电站内 部的各个重要通道上设置出入控制设备,保证有授权的人员 可以通行, 未经授权的人员不能通行。

针对变电站通道控制的技术方案,目前有直接借助安防 领域中的门禁系统的方案,也有采用智能锁具管理系统来控 制各个通道门的方案。下面就两种方式进行探讨, 并给出对 比分析。

2. 分析和比较

门禁系统

一个典型的门禁系统包括远程管理主机、读卡器、身份 识别卡、门禁控制器、不间断电源、电锁、出门按钮等组 成,如下图:

门禁系统组成图

1)工作原理

人员进入时,需要把身份认证卡在入口读卡器上刷卡, 读卡器读取卡片信息后送到门禁控制器进行身份认证。认证 通过后,控制器发命令切断电锁电源,门开启。当人员从内 部出门时,通过按动出门按钮,控制器收到开门的信号后, 切断电锁电源,门开启。

2)配置和实施

变电站的门禁点配置在主控室、高压室、电容室、安全 工具室、电容室、电抗室、电缆室和低压配电室等门上。

针对不同材质的门选择电磁锁、电插锁、玻璃门夹等安 装附件,对于原有门框如果不满足门禁吸力,需要更换门 框。并需要在门周围进行开槽, 预埋相关的门禁管线, 布置 86底盒,放置出门按钮和读卡器,在门框上安装电磁锁, 在墙上固定门禁控制箱。根据变电站各个门的具体位置并结 合电缆沟和电缆桥架位置,选择合适的路径并敷设通信电缆 和电源电缆到管理主机,保证整个门禁系统的通信和供电正

3)特殊要求

为防止出门按钮损坏造成无法开门,需要在门附近安装 紧急玻璃开关,需要时击碎玻璃,实现开门;同时,为保证 在发生火灾时人员能安全撤离,消防报警的接点信号接入了 门禁控制器,一旦消防报警,可实现对电磁锁的无条件开 锁,保证人员的逃生要求。

智能锁具管理系统

一个典型的智能锁具管理系统包括管理主机、电脑钥

匙、智能锁具等,如下图:

智能锁具管理系统组成图

1)工作原理

人员进入时,使用电脑钥匙插入智能锁具中,电脑钥匙 读取智能锁具上的RFID码,电脑钥匙判断是否允许开锁, 如果允许就可以打开智能锁具进入房间, 反之则提示禁止开 锁。当人员从内部出门时,通过扭动门把手实现开门。因 此,采用智能锁具管理系统是可以完成变电站通道管理功能

2)配置和实施

变电站的门锁点不仅可以与门禁系统相同, 配置在主控 室、高压室、电容室、安全工具室、电容室、电抗室、电缆 室和低压配电室等门上,还可以在配电区域内的端子箱、机 构箱、保护通信屏柜等需要进行控制的箱柜增加门锁点。

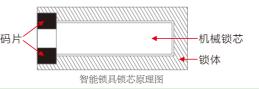
针对不同的门可选择挂锁、防火门锁、插芯锁等锁具, 然后拆除原有门锁并更换为智能锁具。由于智能锁具采用 RFID码片标识身份, 无需供电, 并使用电脑钥匙采集 RFID码片, 无需与管理主机通信。所以, 无需布置电源和 通信线缆。

3)特殊要求

如果在紧急情况下,需要不考虑权限尽快打开通道门, 可以采用紧急解锁钥匙的方式,提高便利性。

由于智能锁具不是在线装置,如果需要临时增加部分通 道门的开启,可以通过GSM短信方式申请临时权限,经过 上级主管领导同意后远程传输开锁权限, 从而实现半在线方

比较和优选


采用门禁或智能锁具管理系统,都可以实现对变电站通 道门的安全管控,而且每次操作完成,都可以生成相关的操 作记录,包含开锁人、时间、通道门名称等信息,可以满足 变电站安全管理的要求。但由于原理不同,两者之间还是存 在很大区别,下面就两者之间的区别做一些比较。

1)适用范围分析

一般来说,门禁系统仅在各个通道门上安装。相比有扩 展的是,智能锁具管理系统有针对各种端子箱、分支箱、汇 控箱、保护测控通信屏柜的专用锁具,可以在进行简单施工 后实现对上述箱柜的闭锁, 因此, 更有利于提高运检人员对 变电站内设备的安全管控程度, 保证变电运行的安全。

2)安全性和便利性分析

当门禁系统的IC感应卡接近读卡器时,读卡器不断的发 出125kHz的低频信号,在IC感应卡中产生感应电流,该感 应电流驱动感应卡中的微电路产生62.5kHz包含卡信息的调 制信号回发给读卡器。读卡器收到信息后,解包得到卡信 息,送到门禁控制器中进行信息比对,从而实现信息认证, 保证通道门的安全。

在紧急情况下,通过管理主机和消防报警启动全部开锁 命令,实现开锁,满足便利性的要求。但是由于全部开锁, 门禁的安全性基本上就丧失了。

如上图,智能锁具的锁芯由码片和机械锁芯组成,负责 与电脑钥匙接口,实现权限认证和开锁;锁体负责保护锁 芯,并与通道门配合,实现对通道门的上锁。当使用电脑钥 匙插入锁芯时, 电脑钥匙读取RFID信息, 经过电脑钥匙验 证后开锁。在紧急情况下,采用紧急解锁钥匙根据实际需要 进行开锁, 其他不涉及的通道门锁无法开锁, 可防止人员误 入危险区域。因此,在满足便利性的同时具备一定的安全

3)可实施性分析

门禁系统在施工过程中需要大量的现场工作来对通道门 进行改造, 主要分为两部分内容。一部分是针对通道门的改 造,包括在通道门上方开槽,预埋门禁管线、读卡器、电磁 锁和开门按钮, 如果通道门不满足门禁拉力要求, 需要更换 门框;另一个部分,包括敷设从通道门到管理主机的通信线 路和电源线缆,需要根据现场情况设计各种布线情况,施工 难度较大。这样必然带来工期长、施工管理过程繁琐, 因此 比较适合基建站建设。

智能锁具管理系统只需要更换现有通道门上的锁具,常 见的插芯锁、防火门锁等锁具都有, 更换工作量相对较小, 对于基建站和改造站的实施具有较好的适应性。

4)投资成本分析

门禁系统的投资由材料、施工和调试三部分组成。材料 包括电磁锁、刷卡器、出门按钮、门禁控制箱等,施工包括 对现场通道门和门附近的墙体的改造和布线工作, 调试包括 对门禁控制器、管理主机、人员权限和图形画面的编辑等。

智能锁具管理系统的投资也由材料、施工和调试三部分 组成。材料包括管理主机、传输适配器、电脑钥匙和锁具, 施工包括对现场通道门锁的改造,对于大多数通道门可以直 接更换,少数不合适的通道门需要进行扩孔改造,也无需敷 设从各个通道门到管理主机的线缆, 节约了相关费用, 调试 包括对锁具的采码、图像界面的编辑和配置数据。

5) 汇总分析

根据上述的分析, 我们得出下表的结论:

项目	门禁系统	智能锁具管理系统
适用范围	各种通道门	各种通道门和箱柜门
安全性	高	高
便利性	中	高
可实施性	现场施工繁琐,对现场环境 要求较高,可实施性低	仅需要改造通道门锁具 无需布线,可实施性高
投资成本	高	中
结论	备用	优选

3. 结论

通过对现有变电站内用于管理通道门,实现分级权限管 理的两个系统进行分析,经过原理、现场施工和投资等多方 面的比较,可以得出结论:变电站内可以采用智能锁具管理 系统来对通道门进行安全管控,从而降低现场施工难度和整 体投资成本, 完全满足对现有变电站出入管理和设备管理的 要求,从而提高变电站的整体管理水平,推进变电站的智能 化建设进程。▲

新闻速速 News

优特科技被授予"珠海市专利金奖"

设工作会议在珠海市人民政府隆重召开, 珠海市委 书记李嘉、市长何宁卡等领导出席会议并为获奖者 颁奖。珠海优特电力科技股份有限公司的发明专利 细分领域内达到国际领先,成为引领行业技术进步 '一种智能闭锁系统及其工作方法",因极佳的创 的关键核心技术。

新性和先进性,被授予"珠海市专利金奖"。

"珠海市专利金奖"每两年评审一次、每次授 奖不超过5项,以鼓励和调动发明创造的积极性。优 特科技的发明专利"一种智能闭锁系统及其工作方 法",解决了传统程序锁的灵活性差和不可修改的 问题,针对复杂的逻辑关系采用数据配置的方式使 之变得灵活简便, 使电气防误操作能够做到可靠和 智能化。

本发明专利技术对于我国电力防误闭锁细分领 域的技术发展起到了非常重要的推动作用, 其技术 特征代表了第五代微机防误闭锁产品的关键功能, 5月29日,珠海市科学技术奖励暨创新型城市建 是产品升级换代的标志性技术。"一种智能闭锁系 统及其工作方法",同时也代表了一代产品的技术 方向, 推动了国内微机防误闭锁技术的发展, 在此

优特科技获得 "国家火炬计划软件产业基地骨干企业"认定

近日,科学技术部火炬高技术产业开发中心发布2013年国家 火炬计划软件产业基地骨干企业名单,全国共126家企业获此荣 誉,珠海优特电力科技股份有限公司作为珠海市仅有的三家企业 之一顺利通过本次审核。

依据相关规定、骨干企业是认定国家火炬计划软件产业基地 的重要条件之一,可优先得到国家火炬计划等国家有关科技项目 和政策的支持。

此次认定是优特科技继2007年后再次获得该项殊荣,优特将 继续大力提升企业自主创新能力和核心竞争力,培育自主知识产 权品牌,加强创新载体和人才队伍建设,加大科技研发投入,成 为引领珠海高新技术产业跨越发展的中坚力量。

珠新出许字第K01279号(内部交流)

珠海优特电力科技股份有限公司主办

1版

2014年第4期

2014年07月11日出版

总第80期

Н

网址:http://www.ut.com.cn

电子邮件:unitech@ut.com.cn

新闻综合版

产品信息、解决方案、新闻资讯都在: www.ut.com.cn 优特科技官网全面升级上线!

智能变电站辅助监控系统扩展应用探讨

1. 概述

智能变电站辅助监控系统以自动化技 术、计算机技术、网络通信技术、视频处理 技术以及智能控制、视频联动等技术为基 础,实现对变电站主要电气设备、关键设备 安装地点以及周围环境进行全天候的监控, 包括对变电站动力环境、视频图像、火灾报 警、消防、照明、采暖通风、安防报警、门 禁等进行在线监视和智能控制。辅助监控系 统是提高变电站运行维护管理能力, 实现电 网的设备工况远程监视、远程操作辅助监 视、现场工作行为监督、事故及障碍辅助分 析、应急指挥及演练、安全警卫、各类专项 检查等功能的统一、综合性平台, 也是实现 电网运行管理信息化和电力系统安全生产的 重要技术手段。

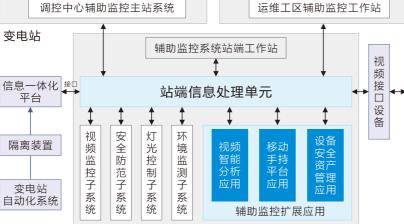
传统智能变电站辅助监控系统主要由站 端综合信息管理单元结合视频监控、环境监 测、安全防范、灯光控制子系统以及与消防 系统、信息一体化平台、调度主站、运维主 站的接口等组成,随着智能电网建设的全面 展开及智能化变电站的推广建设, 变电站辅 助监控系统应用越来越广泛,伴随着应用的 增加,在传统辅助监控功能基础上,也必将 延伸出更多有助于提升变电站运行管理水 平、增强安全保障能力、提高工作效率的扩 展应用。

调控中心

2. 智能变电站扩展应用探讨

视频智能分析应用

随着智能变电站中视频监控应用的不断 推广,运行管理人员对视频信息的应用需求 越来越多,如设备状态的变化判断、指示灯 的变化判断、安全越界预警等等。这些需求 有的能够帮助远方操作人员对设备操作结果 进行辅助判断,有的能够对危及设备或人身 安全的现场状态提出预警,有的可以增强自 动化水平和提高工作效率。但是, 现在常规 的视频监控系统只能实时反映现场的视频图 像和录像信息,并不能对前端的视频信息进 行智能分析及判断预警,还远远不能满足变 电站运行管理人员的应用需求, 所以在智能 变电站辅助监控系统中加入视频智能分析功 能是很有必要的。视频智能分析可以具体应 用到如下方面:


● 变电站可疑人员入侵检测

设置好入侵检测或警戒检测区域,系统 自动检测视频画面情况,发现有人闯入到设 置好的区域,系统自动报警,提醒监控人员 注意现场情况。

● 站内或者周边可疑人员徘徊检测

在变电站内, 有些可疑人员蓄意破坏, 或进行踩点活动,经常长时间在周围徘徊, 系统通过视频画面分析, 自动检测, 并主动

运维工区 运维工区辅助监控工作站 视 消

智能变电站辅助监控系统框架结构图

发出语音报警,提醒监控人员。

• 变电站内可疑遗留物的检测

在变电站有些可疑的遗留物, 或有人故 意弃之疑似爆炸物,可以主动分析可疑遗留 物,发现可疑及时报警,防范未然。

● 值班人员脱岗离岗

当值班人员脱岗离岗时候, 系统能够及 时发出警报,提醒上级运行管理人员。

● 开关合闸到位检测

远方遥控操作开关时, 通过视频智能分 析检测开关是否合闸到位, 并给出最终状态 结果值,作为辅助接点采集信号的辅助判断 信息

• 设备运行指示灯状态检测

通过视频智能分析检测设备运行指示灯 状态变化,并显示最终状态结果值。

安全帽检测

对于进入变电站设备区域的人员要求佩 戴安全帽,如果不戴安全帽的人员进入设备 区域, 系统自动发出告警, 提示相关人员。

智能移动手持平台应用

将移动手持平台通过智能变电站辅助监 控系统引入到变电站日常运维管理工作中, 实现手持移动平台在安全生产、应急指挥、 物资管理、移动办公等方面的应用。移动作 业管理使得数据在现场设备及智能终端、控 制中心和现场作业人员之间能够及时有效地 流动,推进变电站运维工作的效率和准确 性。另外,现场作业人员能更容易地获取所 需信息,管理人员也更容易了解现场工作的 实时进展情况,实现信息互动,提高作业质 量和规范。主要应用如下:

● 远程作业安全监护

给现场作业人员配备移动音视频终端, 可以通过移动终端手持设备把现场情况实时 传输回监控中心,监控中心管理人员可以通 过语音对讲功能对现场作业进行技术指导和 安全监护工作,大大地提升了设备、人员、 作业的综合管控和作业指导效率。

• 现场作业危险点分析

建立以设备单元为基础的危险源数据 库,将存在隐患的设备及可能出现的人身风 险输入数据库中, 在进行操作任务模拟时, 根据操作项目、操作任务或手工输入等方式 自动生成本次操作的危险点分析与预控措 施,也可根据一定的模板形成电子预控单, 在模拟完成后将这些危险点分析与预控措施 下传到手持移动终端上, 在现场操作时, 根 据手持终端上的电子预控单对涉及到人身危 险的操作细节给出语音提醒, 保证现场操作 的正确性和安全性。

● 电子工作票、电子操作票管理

通过手持操作终端存储显示的电子票代 替目前纸质工作票和操作票,并通过无线通 讯、语音、视频等技术手段对现场作业进行 全过程的管理、提示和控制,实现工作票、 操作票从填写到执行、记录、管理的有机统 一, 更重要的是, 通过电子操作票系统可以 将电气操作步骤规范化、标准化,并与防误 闭锁技术相结合, 通过控制解锁器实现对现 场防误锁具的解锁操作,实现了操作票与防 误的高度统一。工作票、操作票执行过程的 电子化,为事故分析,作业管理提供了依 据, 电子工作票、操作票与防误闭锁相结 合,既提高了工作效率,又能够有效保证了 作业内容的正确执行。

● 变电站巡检管理

设备巡检管理按照预先制订的技术标 准, 定人、定点、定量、定标、定路线、定 周期、定方法、定检查记录,施行全过程对 运行的设备进行动态检查,找出设备的异 常,发现隐患,掌握设备故障的初期信息, 以便及时采取对策,将故障消灭在萌芽阶 段。以智能手持终端作为变电站巡检设备, 可以结合手持终端的拍照、测温、测振、手 写等功能,对现场设备的状态信息进行定期 或是不定期的收集、记录, 为电力设备状态 监测、编制检修计划提供有效的支撑。

电子化安全资产管理应用

● 安全工器具管理

变电站内工具室存放有各种工器具包括 各种绝缘手套、工器具、扶梯、验电棒、临 时接地线以及各种检测仪器等。因为工器具 涉及操作人员的生命安全, 所以要求对安全 工器具进行定期检验, 以保证产品性能满足 要求。但是,现有模式是安全工器具在采购

防

子系

统

2014年07月11日

带防误闭锁功能的开关柜智能操显装置

UT-0383开关柜智能防误操显装置是针对目前开关柜存在的安全隐患,开发设计的一种新型的多功能、智能化模拟动态指示装置,本文介绍了其功能、特点,以供选型参考。

1. 概述

高压开关柜是根据不同用途的接线方案,将一、二次设备组装在柜中的一种高压成套配电设备。随着我国电力工业的发展和配电网的大规模建设,开关柜需求日益增长、得到广泛应用,但在运行维护方面存在以下一些问题:

- ■二次设备智能化程度低,除保护测控装置、电度表等之外,无远方监视功能,比如高压带电显示、温湿度控制、二次压板状态等;
- 大部分开关柜的一次接线图不具备 动态显示功能和语音提示功能,现 场巡检及检修不方便;
- 开关柜上的显示、操控等分立元件 较多,影响整体美观,且内部安装 接线复杂,不利于系统的安装调 试:
- 防误功能不完善,验电与地刀、地 线无强制闭锁措施;闭锁点多,都 为机械挂锁,缺少集中管理。

UT-0383开关柜智能防误操显装置是 珠海优特公司针对目前开关柜的运行维护问 题,结合多年的防误闭锁产品研发和工程经 验,专门设计的一款开关柜智能化装置。

2. 装置功能

UT-0383开关柜智能防误操显装置集一次回路模拟图以及断路器分合闸、小车(或隔离刀闸)位置、接地刀闸、储能状态的动态显示、温湿度自动控制、高压带电显示及闭锁、智能语音防误提示、人体感应、防误闭锁、智能压板等多功能于一体,并具有RS485通信接口、电脑钥匙就地操作接口,适用于3kV~35kV电压等级的中置柜、手车柜、固定柜、环网柜等多种户内开关柜。。

动态模拟显示

● 断路器状态指示

- 1)断路器在合闸状态时(断路器合位 置辅助接点闭合),断路器指示红灯亮;
- 2) 断路器在分闸状态时(断路器分位 置辅助接点闭合),断路器指示绿灯亮。

● 手车位置指示

- 1) 手车处于工作位置时,上、下手车 指示红灯亮;
- 2) 手车处于试验位置时,上、下手车 指示绿灯亮。

● 接地开关位置指示

- 1)接地开关处于合闸状态时(接地刀 闸辅助接点闭合),接地开关指示红灯亮;
- 2)接地开关处于分闸状态时(接地刀闸辅助接点断开),接地开关指示绿灯亮。

弹簧储能指示

- 1)弹簧机构已储能(辅助接点闭合),储能指示灯亮;
- 2)弹簧机构未储能(辅助接点断开),储能指示灯灭。

温湿度自动控制

- 1)启动加热: 当环境温度小于加热启动定值时,或者环境湿度大于除湿启动定值时,启动加热器。
- 2)停止加热:如低温启动加热,则当环境温度上升到预定值后,停止加热;如因除湿启动加热,则当环境湿度下降到预定值后,停止加热;如因低温、除湿同时启动加热,则环境温度上升到预定值且环境湿度下降到预定值,则停止加热;如环境温度大于停止加热定值时,无条件停止加热。
- 3)启动排风:当环境温度大于排风启动定值时,启动风扇。
- 4)停止排风: 当环境温度下降到停止排风定值时,关闭风扇。

高压带电显示及闭锁

- 1) 高压带电显示: 当A、B、C三相带电时,相应的A、B、C三相带电指示灯亮。
- 2) 高压带电闭锁: 当A、B、C三相任何一相带电时,高压闭锁指示灯亮,高压闭锁接点断开。当A、B、C三相全部不带电时,高压闭锁指示灯灭,高压闭锁接点闭合,允许相关操作。

- 2)接地刀闸开关处于合闸位置时,如 误将小车从试验位推至运行位,则接地开关 分状态灯闪烁,装置语音提示"请分接地开 关";
- 3)断路器和接地开关都处于合闸位置时,如误将小车从试验位推至运行位,则断路器分状态灯闪烁、接地开关分状态灯闪烁,装置语音提示"请分断路器、请分接地开关"。

人体感应

- 1)照明控制:通过探测红外辐射变化 感知人体接近,自动开启开关柜柜内照明, 并点亮面板液晶屏背光,当人离开本开关柜 后,自动关闭柜内照明,熄灭面板液晶背 光。
- 2)间隔带电提示: 当本开关柜高压带 电时,如有人体靠近,则语音提示"本回路 带电"。

就地操控

可根据需求配置操作开关,实现远方/就地操作、分合闸操作、储能操作(手储/自储切换)。

防误闭锁

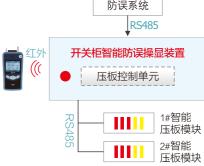
UT-0383开关柜智能防误操显装置能实现开关柜远方/就地操作的双重闭锁。受装置控制的遥控闭锁接点串入开关柜遥控操作控制回路,实现开关柜遥控操作的强制闭锁;电编码锁则串入开关柜就地操作控制回路,实现开关柜就地手动操作的强制闭锁。

UT-0383开关柜智能操显及防误装置可选配1~2套智能压板模块,每套智能压板模块就置5个智能压板,智能压板采用非电量接触原理检测压板状态(投、退、半投),并能对压板的异常状态进行报警提示,如状态异常(异常投、异常退),半投异常(压板未投到位等)。压板常规功能与智能检测模块无任何电气联系,互不影响,

2) 就地操作时, 防误主机将操作票传

到电脑钥匙,操作人员到现场将电脑钥匙插

入开关柜智能防误操显装置的电脑钥匙接


口, RFID码确认通过后, 由电脑钥匙实现

就地操作解锁。若操作票中有验电步骤,则

电脑钥匙经红外通信接口从开关柜智能防误

压板状态监视及防误操作

操显装置读取验电点的带电状态。

并可通过RS485通讯接口将压板状态实时传送给后台系统(防误主机或监控主机)。


压板状态监视及防误示意图

3. 技术特点

- 集开关柜的显示、操控、防误等功能于一体,高度集成化、智能化, 简化并美化了开关柜面板;
- 集成高压带电显示和带电闭锁功能,高压带电检测采用特殊电路设计,检测灵敏度高,能够在5μA的微小电流下实现可靠的带电提示功能;
- ■与电脑钥匙配合,可实现高压强制 验电功能;
- 可独立实现电力系统核相功能,不 需依赖其它核相仪器;
- 采用了长寿命、高亮度LED闪烁指示技术,确保良好的显示效果和使用寿命;
- 集成电编码锁模块,实现就地、远 方操作时的强制闭锁功能;
- 集成智能压板模块,实现压板状态 实时监视及压板操作时的防误提示 功能,完美地将一、二次设备防误 融合在一起;
- 内置本间隔的防误逻辑,在防误主 机失效时,能独立完成本间隔的防 误闭锁功能;
- 能够记录每一次操作的解闭锁信息,方便用户追忆查询。

4. 总结

UT-0383开关柜智能防误操显装置将 开关柜智能操显、开关柜一二次设备防误功 能最大限度地综合在一起,降低了开关柜设 计、施工和维护的难度,有效解决了目前高 压开关柜防误功能不完善、防误锁具非智能 化、操控不集中的问题,能够显著提高开关 柜操控、防误以及测显的集成度和智能化程 度,为用户的管理和维护带来了便利。▲

3) 高压验电:通过红外通信,防误系统的电脑钥匙可读取本间隔的高压带电信息,实现就地操作的高压强制验电功能。

4)核相功能:装置提供核相接口,用 于核相操作。

智能语音防误提示

1) 断路器处于合闸位置时,如误将小车从试验位推至运行位,则断路器分状态灯 闪烁,装置语音提示"请分断路器";

防误闭锁示意图

1) 遥控操作时,操作人员在防误主机进行模拟预演,模拟正确后执行操作,经RS485总线向开关柜智能防误操显装置发送解锁命令,对应的遥控闭锁接点闭合,完成远方操作的解锁。操作人员在监控系统完成被控设备的遥控操作,防误主机收到设备变位信息后,发送闭锁命令,开关柜智能防误操显装置断开当前的遥控闭锁接点,恢复闭锁,进入下一操作步。

(上接A版)

后投入使用,定期检验只能人工记录手动清点,造成工器具的管理难度大,不利于实时掌握工器具的在库、到期检验问题。

辅助监控系统可以结合物联网和RFID识别技术,在每台工器具上安装对应的识别标签,通过读码设备快速非接触式识别设备,并把信息集中送往后台主机进行集中存储管理。当运维人员想要了解某一工器具信息时,可以通过管理后台或移动手持终端,快速访问数据信息库,自动调用系统存储的工器具信息进行浏览查看,了解工器具的设备台账、技术参数、试验记录、取用记录等相关信息,实现安全工器具全生命周期的自动化、信息化管理,提高安全工器具管理水平与工作效率。

● 智能锁具管理

目前变电站内各种锁具和钥匙繁多,端子箱、机构箱、汇控柜、爬梯、高压室、继保室、安具室、测控屏柜等都有各自的锁具和钥匙。这些数量庞大且种类繁多的钥匙,使得变电站内钥匙管理和开锁成为令人头痛的难题,开锁的时候往往要花很长时间才能找到对应的钥匙,不仅给工作人员带来了寻找钥匙的烦恼,

而且大大降低了工作的效率。

智能变电站辅助监控系统可以增加智能锁具管理功能,实现 用一把智能钥匙在设定条件下可以打开经授权的所有非五防类锁 具,并有开锁记录的管理功能,使钥匙管理化繁为简,不必从一 大串钥匙中大海捞针,彻底解决变电站钥匙管理的难题。

3. 结束语

根据目前国网公司"三集五大",特别是"大运行"、"大 检修"管理体系的建设要求,以及南方电网关于"3C变电站"的 建设要求,本文在现有智能变电站辅助监控系统传统功能上提出 了视频智能分析、移动手持终端、电子化安全资产管理等一系列 的扩展应用功能,这些扩展应用从智能化、移动化、可视化、电 子化等多方面,有效提高了电网运行管理的智能化、自动化、信 息化水平,在保证安全作业基础上,同时提升智能变电站运维管 理的工作效率和质量。

UT-6000系列配电终端之

WWW.UT.COM.CN -

UT-6431电压监测仪

UT-6000系列配电终端是优特科技自主研发的全系列配电自动化终端产品,其中UT-6431是可应用于变电站、开闭所、配电室、环网柜等的电压监测装置,本文介绍了其功能、特点及应用。

1. 概述

电压监测仪是对电力系统正常运行状态 缓慢变化所引起的电压偏差进行连续的监测和统计的仪表,具备监测、分析、记忆、查询、参数设置等功能,支持GSM短信、GPRS网络、3G、以太网、RS485组网方案。适用范围为220V/50Hz低压系统、380V/50Hz低压系统和500kV/50Hz以下高压系统。电压监测仪通过网络与主站构成电压监测系统。

2005年1月19日,国家电网公司颁布了新的《电力系统电压和无功管理条例》,作为电网的法规与标准,进一步明确了电压监测仪的监测点布局要求,中国电监会代表中国政府对供电企业的监督考核中,电压质量是一个重要的考核指标,电压监测系统也被提升到相对重要的地位。

2. 电压监测仪发展历程

从九十年代末期开始的大规模电网改造 开始,电网的改造与建设投入了大量的资 金,对供电质量也提出了更高的要求,对电 压合格率、供电可靠率等指标有了明确规 定。自1992年推出《DL/T 500 电压监测仪 使用技术条件》以来,电压监测仪产品经过 二十多年的发展,大致经历了以下几个阶 码。

第一代:读数式,由人工对记录的数据进行抄录,形成手工报表;

第二代: IC卡式,由人工持有一张存储数据的IC卡,到现场对记录的数据进行抄取:

第三代:电话线MODEM式,每一台电 压监测仪装一部电话线,利用电话线进行数 据远程传输;

第四代: GSM短信式,利用中国移动 提供的短信平台发送一条短信,将记录的数 据远程传输;

第五代: GPRS/CDMA/3G网络式,利用中国移动或中国联通的GPRS/CDMA网络,实现了实时数据传输。

目前,国内主流的电压监测仪为第四代和第五代产品。随着通讯技术的不断发展,3G牌照的发放,无线通信网络的建设进入了一个新的阶段,3G网络为电压质量数据的传输提供了更可靠更稳定的平台。在3G平台上,可以进一步扩展电压监测仪的

功能,更好地实现"四遥"通讯。特别是为图像传输提供了很好的途径,也为电压监测仪扩展新的功能奠定了基础。

2013年3月,国家电网公司发布了《电压监测装置技术规范》(Q/GDW 1819 - 2013),对电压监测装置的术语和定义、使用条件、装置分类、功能要求、结构与性能要求、安全防护、试验、标志、包装、运输、贮存要求以及数据传输规约等方面的内容提出了明确要求,UT-6431电压监测仪是遵照此规范开发的第五代产品。

3. UT-6431基本功能及配置

电压采集:电压监测装置对被监测电压 采用有效值采样,每秒至少1次,并作为预 处理值贮存,1min作为一个统计单元,取 0秒时刻开始的1min内电压预处理值的平均 值,作为被监测系统的即时实际运行电压, 不足1min的值不进行统计计算。

日(月)数据统计:电压监测装置根据实际运行电压(1min平均值)及被监测电压额定值、整定电压上限值和整定电压下限值来统计日(月)电压监测数据,包括总运行统计时间、越上限累计时间、越下限累计时间、电压合格率、电压越上限率、电压越下限率、电压最大值及其发生时间、电压最小值及其发生时间。

日(月)数据存储:保存最近45天内每天的电压监测日统计数据。保存本月及上月的电压监测月统计数据。保存最近45天被监测的实际运行电压(1min平均值),存储的间隔5min。保存本月及上月的电压越限、越限复归事件记录。

显示功能:采用128×64点阵型液晶,中文界面,菜单方式显示。支持显示:实时电压值,电压统计数据,参数,型号配置,实时时间,装置ID,软件版本等信息

参数设置与查询:设置与查询日期与时间、通信参数、监测点参数、CAC装置IP地址和端口号、装置基本信息、装置工作状态信息、装置ID、权限密码等。

事件告警:支持电压越限、越限复归事件功能记录,包括事件发生时刻及当时电压

停电、来电事件检测功能: 停电、来电事件记录包括事件发生时刻。检测到事件后主动向CAC上报。

持续工作时间记录: 具备统计并记录其 自身正常投入运行时间的功能,包括每次复 位后连续工作时间和自投运以来总运行时 间,统计单位为小时。

时钟与对时功能: 电压监测装置采用具有温度补偿功能的内置硬件时钟电路;

电压监测装置应具备和CAC对时的功能。无线通信对时误差 \leq ±3s;有线通信对时误差 \leq ±1s。

通信接口: GPRS/CDMA/3G通信、以 太网通信、RS485通信和RS232通信,用于 远程和本地通信。

安全防护功能:电压监测装置应采用国家密码管理局认可的支持SM1、SM2算法的工业级安全加密卡

主动上报:一旦失去工作电源,电压监测装置具有与CAC通信三次完成停电事件上报和随后24小时内的定时上报数据的能力,能保持内部时钟运行168小时,不丢失并保存各项设置值和记录数据。

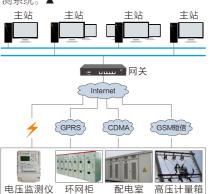
远程维护功能: 支持远程软件升级和远程参数浏览与设置。软件升级完成后能自动开始转入正常运行。

谐波计算:采集电压的2~39次谐波。

录波功能:实时监测电压质量,记录电压突变前、后共10(前3+后7)个周波的数据信息。利用录波功能可以记录和分析电压闪变、骤升、骤降事件。

4. UT-6431技术参数

UT-6431技术参数表见下表。


5. UT-6431技术特色

■ 强大的硬件配置:32位处理器,处理速度快,内部资源丰富,大大减少外围器件数目,提高产品运行可靠性.

- 采用工业级GPRS/CDMA/3G无线通 信芯片,模块化设计,支持热拔 插;
- 支持高精度电压测量,支持单相、 三相四线制、三相三线制多种接线 方式;
- 支持2~39次谐波计算;
- 具备录波功能,利用录波功能可以 记录和分析电压闪变、骤升、骤降 事件,有利于电能质量的监测;
- 大容量数据存储器,存储历史数据 长达10年以上;
- 具备大容量超级电容,断电后能保证完成掉电事件上报,减少因后备充电电池引起的维护工作量;
- 通过调试软件可对装置进行本地和 远程升级,远程升级支持断点续 传:
- 多种软硬件措施提高远程通信的在 线率。

6. 电压监测系统应用

UT-6431电压监测仪一般安装于变电站、开闭所、配电室、环网柜等处,电压监测仪通过无线网络与主站通信,构成电压监测系统。▲

UT-6431电压监测系统应用图

UT-6431技术参数表

参数类别		技术参数
	供电方式	被测电压或辅助电源输入电压范围: 85~450 VAC;
	额定电压与偏差	100V, 220V或380V允许波动范围: 0.60Ug~1.2Ug
	接线方式	单相、三相四线制、三相三线制、二相(V形跨接)
电压输入	额定频率	50Hz, 允许误差:±5%。
	功率消耗	<3VA(非通信)
	失电保护	E2PROM存储重要数据,保存期100年, 内部时钟掉电保持168小时
	温度条件	-40 ~ 70 °C
环境条件	相对湿度	+45℃时95%
	大气压力	79.5~106.0kpa (海拔2000m及以下)
	静电放电抗扰性能	GB/T 17626.2 3级
	电磁场辐射抗扰性能	GB/T 17626.3 3级
电磁兼容	电快速瞬变脉冲群抗扰性能	GB/T 17626.4 3级
要求	高频阻尼振荡波抗扰性能	GB/T 17626.12 3级
	浪涌(冲击)抗扰性能	GB/T 17626.5 3级
	工频磁场抗扰度性能	GB/T 17626.8 5级
	绝缘电阻	≥500兆欧
	绝缘强度	额定绝缘电压(V)
绝缘性能		Ui≤60
		60 < Ui≤250
		250 < Ui≤690
耐压强度	工频耐压强度	2.5kV,1min不击穿
	被监测额定电压Ue	误差不大于±0.5%
准确度	内部时钟	误差每天不大于±1s或每年不大于±5min 无线通信对时误差≤±3s;有线通信对时误差≤±1s
诵信接口	远程	GPRS/CDMA/3G/短信/以太网/RS485
世 旧 1 女 口	本地	RS232/RS485
通信	协议	《供电电压自动采集系统11接口网络通信规范》
统计	形式	仪表自动地按时、日、月方式分别分类统计
统计		1min
综合	测量误差	≤0.5%
失电	保护	失电后上送停电事件3次,内部时钟掉电保持168小时,
7.7.2.1.0		E2PROM存储重要数据,保存期100年
外形		230x160x78.5 (mm)
安装方式		挂载式

UT-6000系列智能配电终端

UT-6000系列智能配电终端,涵盖了故障指示器、FTU、DTU、TTU系列产品,适用于35kV以下中、低压配电网络的柱上开关、环网柜、开闭所、配电房、配电变压器等一次系统设备,实现遥测、遥信、遥控和遥调功能,为提高供电可靠性,减少停电时间和监测电能质量提供有效的手段。

